Laser Level Scheme of Self-Interstitials in Epitaxial Ge Dots Encapsulated in Si

نویسندگان

  • Martyna Grydlik
  • Mark T. Lusk
  • Florian Hackl
  • Antonio Polimeni
  • Thomas Fromherz
  • Wolfgang Jantsch
  • Friedrich Schäffler
  • Moritz Brehm
چکیده

Recently, it was shown that lasing from epitaxial Ge quantum dots (QDs) on Si substrates can be obtained if they are partially amorphized by Ge ion bombardment (GIB). Here, we present a model for the microscopic origin of the radiative transitions leading to enhanced photoluminescence (PL) from such GIB-QDs. We provide an energy level scheme for GIB-QDs in a crystalline Si matrix that is based on atomistic modeling with Monte Carlo (MC) analysis and density functional theory (DFT). The level scheme is consistent with a broad variety of PL experiments performed on as-grown and annealed GIB-QDs. Our results show that an extended point defect consisting of a split-[110] self-interstitial surrounded by a distorted crystal lattice of about 45 atoms leads to electronic states at the Γ-point of the Brillouin zone well below the conduction band minimum of crystalline Ge. Such defects in Ge QDs allow direct transitions of electrons localized at the split-interstitial with holes confined in the Ge QD. We identify the relevant growth and annealing parameters that will let GIB-QDs be employed as an efficient laser active medium.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The investigation of selective pre-pattern free self-assembled Ge nano-dot formed by excimer laser annealing

Localized Ge nano-dot formation by laser treatment was investigated and discussed in terms of strain distribution. The advantage of this technique is patterning localization of nano-dots without selective epitaxial growth, reducing costs and improving throughput. Self-assembled Ge nano-dots produced by excimer laser annealing statistically distributed dot density and size dependent on laser ene...

متن کامل

Site-controlled and advanced epitaxial Ge/Si quantum dots: fabrication, properties, and applications.

In this review, we report on fabrication paths, challenges, and emerging solutions to integrate group-IV epitaxial quantum dots (QDs) as active light emitters into the existing standard Si technology. Their potential as laser gain material for the use of optical intra- and inter-chip interconnects as well as possibilities to combine a single-photon-source-based quantum cryptographic means with ...

متن کامل

Designer Ge/Si composite quantum dots with enhanced thermoelectric properties.

An otherwise random, self-assembly of Ge/Si composite quantum dots (CQDs) on Si was controlled by inserting a layer of Si, sub-dot stacks, and post-annealing to produce micron-scale-thick QD layers with desired QD morphology, interface density, and composition distribution. A heterostructure consisting of a deliberate insertion of Si between Ge sub-dots is shown to improve the epitaxial coheren...

متن کامل

Germanium epitaxy on silicon

With the rapid development of on-chip optical interconnects and optical computing in the past decade, silicon-based integrated devices for monolithic and hybrid optoelectronic integration have attracted wide attention. Due to its narrow pseudo-direct gap behavior and compatibility with Si technology, epitaxial Ge-on-Si has become a significant material for optoelectronic device applications. In...

متن کامل

Two-stage model of nanocone formation on a surface of elementary semiconductors by laser radiation

In this work, we study the mechanism of nanocone formation on a surface of elementary semiconductors by Nd:YAG laser radiation. Our previous investigations of SiGe and CdZnTe solid solutions have shown that nanocone formation mechanism is characterized by two stages. The first stage is characterized by formation of heterostructure, for example, Ge/Si heterostructure from SiGe solid solutions, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016